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2-Sample Case
3-Sample Case

I Two Sample Optimal Design (Rosenberger et al., 2001):

I Minimizes treatment failures (n1(1− p1) + n2(1− p2)).

I Assumes fixed variance for each success rate.

I Allocation weights:

w1 =

√
p1√

p1 +
√

p2

w2 = 1− w1

I In actual trials, pj is replaced with sample proportion p̂j.
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I Three Sample Optimal Design (Tymofyeyev et al., 2007; Jeon
and Hu, 2010):

I Assuming fixed variances, minimizes treatment failures
(n1(1− p1) + n2(1− p2) + n3(1− p3)).

I Let w∗ = (w∗1 ,w
∗
2 ,w
∗
3)

T denote optimal proportions.

I B ∈ (0, 1/3) represents minimum allocation proportion.

I Then for p1 > p2 > p3, allocation weights are:

w∗1 = l−1
2 (l1 + l3B)

w∗2 = B

w∗3 = 1− B− w∗1 ,
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2-Sample Case
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I Three Sample Optimal Design, continued:

I where

l1 = (a(p1 − p3) + b(p2 − p3) + d)/p3q3

l2 = (b(p1 − p2) + c(p1 − p3)− d)/p1q1 + l1
l3 = (a(p1 − p2)− c(p2 − p3) + d)p2q2 − l1
a = −(Bq2 − (B− 1)q3)/p1q1

b = −(B(q3 − q1))/p2q2

c = (Bq2 − (B− 1)q1)/p3q3

d =
√
−ab(p1 − p2)2 − ac(p1 − p3)2 − bc(p2 − p3)2

I If w∗
1 ≤ B, the solution is w∗ = (B,B, 1− 2B)T .

I If w∗
3 ≤ B, the solution is w∗ = (1− 2B,B,B)T .
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2-Sample Case
3-Sample Case

I Three Sample Optimal Design, continued:

I When p1 = p2 > p3, if

B ≤ min
[ √

p1

2(
√

p1 +
√

p3)
,

√
p3√

p1 +
√

p3
, 1/3

]
,

the solution is:

w∗1 = w∗2 =

√
p1

2(
√

p1 +
√

p3)

w∗3 =

√
p3√

p1 +
√

p3

I If B >
√

p1

2(
√

p1+
√

p3)
, the solution is w∗ = (B,B, 1− 2B)T .

I If B >
√

p3√
p1+
√

p3
, the solution is w∗ = ((1− B)/2, (1− B)/2,B)T .
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2-Sample Case
3-Sample Case

I Three Sample Optimal Design, continued:

I When p1 > p2 = p3, if

B ≤ min
[ √

p3

2(
√

p1 +
√

p3)
, 1/3

]
,

the solution is:

w∗1 =

√
p1√

p1 +
√

p3

w∗2 = w∗3 =

√
p3

2(
√

p1 +
√

p3)

I If B >
√

p3

2(
√

p1+
√

p3)
, the solution is w∗ = (1− 2B,B,B)T .

I In actual trials, pj is replaced with sample proportion p̂j.
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2-Sample Case
3-Sample Case

I Problems with optimal design:
I Allocation weights not defined when yj = 0 or yj = nj.
I Allocation weights more variable when nj are small.

I Possible Solutions:
I Hard Lead-In: fix allocation proportions for certain number of

subjects.
I Conditional Hard Lead-In: fix allocation proportions until at least

one success observed in each arm.

I Natural lead-in:
I Restricts allocation proportions in early phases of trial.
I Ability to adapt increases as trial continues.
I Often use Bayes estimators.
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2-Sample Case
3-Sample Case

I Two Sample Natural Lead-In (Thall and Wathen, 2007):

I Allocation weights:

w1 =
pc(n,N)

1

pc(n,N)
1 + pc(n,N)

2

w2 = 1− w1

c(n,N) = n/2N

I In actual trials, p1 and p2 replaced with posterior probabilities
P(p1 > p2) and P(p2 > p1) (Thompson, 1933).

I Allocation proportions begin at equal allocation.
I Allocation allowed to increase as trial continues.
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2-Sample Case
3-Sample Case

I Three Sample Natural Lead-In (Bello and Sabo, submitted):

I Allocation weights (based off Hu and Zhang (2004)):

wj =
w∗j
(
(w∗j

∑3
i=1 ni)/nj

)γ(n,N)

∑3
k=1 w∗k

(
(w∗k

∑3
i=1 ni)/nk

)γ(n,N)

j = 1, 2, 3,

γ(n,N) = (N − (n + 1))/n

I In actual trials, p1 replaced with posterior probability
P [(p1 > p2)

⋂
(p1 > p3)], etc.

I Allocation proportions begin at equal allocation.
I Allocation allowed to increase as trial continues.
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Prior Specification
Examples

I Problems with Natural Lead-In Methods:

I Ad hoc: not designed to optimize anything.

I If estimators of pj not used, then allocation proportions DO NOT
converge to optimality.

I Alternative Solutions:

I Use posterior to estimate mean or mode instead of efficacy
probabilities

I Use posterior estimators that do not change much when n is
small.

I Use optimal designs in two- and three-group cases.
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Prior Specification
Examples

I Decreasingly Informative Priors:
I Mass or density functions.

I Parameters are functions of observed (n) and planned (N) sample
sizes.

I Skeptical priors: centered around some value θ0.

I In Bayes set-up:
I Identical priors for all groups (e.g. treatment groups).

I When n is small, more information in prior than likelihood.

I As n increases, information incrementally transferred to
likelihood.
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Prior Specification
Examples

I General Set-Up:

θ ∼ P(θ|y) = f (y|θ)π(θ|θ0, n,N)g(θ0|λ)∫
f (y|θ)π(θ|θ0, n,N)g(θ0|λ)

I y→ observed data

I θ → parameter of interest

I f (.)→ likelihood

I π(.|θ0, n,N)→ DIP

I g(.)→ hyperprior on θ0 with hyperparameter λ
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Prior Specification
Examples

I Say we have binary outcomes in K groups.

I Model: beta-binomial conjugate pair.

I Point Mass DIP centered at p0.
I f (.)→ yk ∼ binomial(nk, pk)

I DIP:
π(.|θ0, n,N)→ pk ∼ beta [1 + p0(N − n), 1 + (1− p0)(N − n)]

I g(.)→ p0 = p0 with probability 1

I θ → pk ∼
beta [1 + yk + p0(N − n), 1 + (nk − yk) + (1− p0)(N − n)]
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Prior Specification
Examples

I Say we have binary outcomes in K groups.

I Model: beta-binomial conjugate pair.

I DIP centered at p0 with hyperprior.
I f (.)→ yk ∼ binomial(nk, pk)

I DIP:
π(.|θ0, n,N)→ pk ∼ beta [1 + p0(N − n), 1 + (1− p0)(N − n)]

I g(.)→ p0 beta [1 + δ1, 1 + δ2]

I θ → pk ∼ f (pk|yk, n,N, p0, δ1, δ2)
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Prior Specification
Examples

I Say we have continuous outcomes in K groups.

I Model: normal-normal conjugate pair.

I DIP centered at µ0 with hyperprior and fixed variance φ0.
I f (.)→ yk ∼ normal(µk, φk)

I DIP: π(.|θ0, n,N)→ µk|φk ∼ normal(µ0, φ0(n,N)), where
φ0(n,N) is some increasing function of n.

I g(.)→ µ0 normal(0, φA), where φA is large

I θ → µk ∼ f (µk|yk, n,N, θ0, φ0, φA)
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Prior Specification
Examples

I Say we have count outcomes in K groups.

I Model: gamma-Poisson conjugate pair.

I DIP centered at λ0 with hyperprior.
I f (.)→ yk ∼ Poisson(λk)

I DIP: π(.|θ0, n,N)→ λk ∼ gamma(α0(n,N), β0(n,N)), where
α0(n,N)→ 1 and β0(n,N)→ 0 as n→ N.

I g(.)→ α0 ∼ gamma(α1, β1) and beta0 ∼ gamma(α2, β2) are
both difuse.

I θ → λk ∼ f (λk|yk, n,N, α0(n,N), β0(n,N), α1, α2, β1, β2)
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Prior Specification
Examples

I Calculating P(p1 > p2) or P [(p1 > p2)
⋂
(p1 > p3)]:

I Integration

I Direct Sampling (conjugate pairs, DIP with point mass, NLI)

I MCMC.

I Posterior Mean or Mode:

I Can be calculated directly (conjugate pairs, DIP with point mass,
NLI).

I Integration, Direct Sampling, MCMC
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Simulation Study
Data Example

I Two Group Case (DIP with Point Mass)
I True Efficacy: p1 = 0.5 and p2 = 0.3, N = 200

DIP
TW p0 = 0.2 p0 = 0.3∗ p0 = 0.4

%(n1 > n2) 99.7% 98.4% 99.4% 99.6%
Power 80.9% 71.8% 78.6% 79.7%

n̂1 144.7 153.8 148.3 143.0
n̂2 55.3 46.2 51.7 57.0

(SD) (16.37) (20.07) (16.60) (14.16)

∗ indicates correct choice of prior.
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Simulation Study
Data Example

I Two Group Case (DIP with Point Mass)
I True Efficacy: p1 = 0.7 and p2 = 0.5, N = 200

DIP
TW p0 = 0.4 p0 = 0.5∗ p0 = 0.6

%(n1 > n2) 98.9% 98.2% 98.5% 98.6%
Power 79.1% 75.8% 79.8% 77.5%

n̂1 143.6 150.0 146.8 142.9
n̂2 56.4 50.0 53.2 57.1

(SD) (17.80) (19.08) (17.14) (15.32)

∗ indicates correct choice of prior.
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Simulation Study
Data Example

I Two Group Case (DIP with Point Mass)
I True Efficacy: p1 = 0.9 and p2 = 0.7, N = 200

DIP
TW p0 = 0.6 p0 = 0.7∗ p0 = 0.8

%(n1 > n2) 99.9% 99.3% 99.8% 99.9%
Power 95.3% 92.2% 94.7% 93.8%

n̂1 153.0 154.0 153.0 151.5
n̂2 47.0 46.0 47.0 48.5

(SD) (15.76) (15.70) (14.09) (13.34)

∗ indicates correct choice of prior.
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Simulation Study
Data Example

I Two Group Case (DIP with Point Mass)
I True Efficacy: p1 = 0.5 p2 = 0.3, N = 200

(a) TW (b) DIP p0 = 0.2
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Simulation Study
Data Example

I Two Group Case (DIP with Point Mass)
I True Efficacy: p1 = 0.5 p2 = 0.3, N = 200

(c) DIP p0 = 0.3 (d) DIP p0 = 0.4
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Simulation Study
Data Example

I Two Group Case (DIP with Hyperprior; posterior mean)
I True Efficacy: p1 = 0.25 and p2 = 0.1, N = 200

Bal. TW DIP
Exp. Succ. 35.1 (3.85) 36.5 (4.28) 36.1 (4.00)

n̂1 100.2 (7.13) 110.6 (7.81) 105.3 (6.89)
n̂2 99.8 (7.13) 89.4 (7.81) 94.7 (6.89)

Power 80.0% 81.2% 80.3%
Error 0.0% 0.0% 0.0%
R50 – 1.24 (0.15) 1.06 (0.04)
R75 – 1.40 (0.22) 1.14 (0.07)
R100 – 1.58 (0.30) 1.53 (0.25)
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Simulation Study
Data Example

I Two Group Case (DIP with Hyperprior; posterior mean)
I True Efficacy: p1 = 0.55 and p2 = 0.4, N = 352

Bal. TW DIP
Exp. Succ. 167.2 (7.86) 167.9 (8.92) 167.8 (8.57)

n̂1 175.7 (9.47) 183.1 (10.23) 181.4 (9.65)
n̂2 176.3 (9.47) 168.9 (10.23) 170.6 (9.65)

Power 80.0% 81.3% 80.1%
Error 0.0% 0.0% 0.0%
R50 – 1.08 (0.04) 1.05 (0.03)
R75 – 1.13 (0.06) 1.10 (0.04)
R100 – 1.17 (0.07) 1.17 (0.07)
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Simulation Study
Data Example

I Two Group Case (DIP with Hyperprior; posterior efficacy)
I True Efficacy: p1 = 0.25 and p2 = 0.1, N = 200

Bal. TW DIP
Exp. Succ. 35.1 (3.85) 40.6 (5.12) 38.5 (4.56)

n̂1 100.2 (7.13) 138.6 (12.85) 122.7 (7.60)
n̂2 99.8 (7.13) 61.4 (12.85) 77.3 (7.60)

Power 80.0% 77.8% 83.1%
Error 0.0% 0.0% 0.0%
R50 – 2.56 (1.11) 1.44 (0.29)
R75 – 5.51 (3.12) 2.24 (0.73)
R100 – 12.2 (8.22) 12.3 (7.78)
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Simulation Study
Data Example

I Two Group Case (DIP with Hyperprior; posterior efficacy)
I True Efficacy: p1 = 0.55 and p2 = 0.4, N = 352

Bal. TW DIP
Exp. Succ. 167.2 (7.86) 178.0 (15.11) 175.1 (12.79)

n̂1 175.7 (9.47) 244.1 (22.60) 226.9 (17.08)
n̂2 176.3 (9.47) 107.9 (22.60) 125.1 (17.08)

Power 80.0% 76.5% 81.5%
Error 0.0% 0.0% 0.0%
R50 – 2.63 (1.12) 1.69 (0.46)
R75 – 5.55 (3.14) 3.24 (1.57)
R100 – 12.3 (8.44) 12.4 (8.13)
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Simulation Study
Data Example

I Three Group Case (DIP with Hyperprior; posterior mean)
I True Efficacy: p1 = 0.25, p2 = 0.15 and p3 = 0.1, B = 0.2,

N = 345

Bal. BS DIP
E(S) 57.2 (4.2) 62.6 (6.1) 59.0 (4.6)

Power 79.5% 81.1% 78.5%
Error 0.0% 1.1% 1.3%
R50 – 2.93 (2.17) 2.36 (1.79) 1.39 (0.75) 1.29 (0.69)
R75 – 2.30 (1.05) 1.96 (0.98) 1.53 (0.77) 1.32 (0.70)
R100 – 2.18 (0.75) 1.87 (0.73) 2.18 (0.74) 1.83 (0.72)
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Simulation Study
Data Example

I Three Group Case (DIP with Hyperprior; posterior mean)
I True Efficacy: p1 = 0.55, p2 = 0.45 and p3 = 0.4, B = 0.2,

N = 618

Bal. BS DIP
E(S) 288.4 (8.9) 294.4 (14.9) 290.2 (11.6)

Power 78.8% 81.3% 80.1%
Error 0.0% 0.7% 1.3%
R50 – 2.34 (1.50) 2.00 (1.58) 1.44 (0.70) 1.31 (0.67)
R75 – 2.00 (0.84) 1.61 (0.87) 1.66 (0.67) 1.36 (0.65)
R100 – 1.89 (0.61) 1.50 (0.63) 1.90 (0.58) 1.46 (0.61)
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Simulation Study
Data Example

I Three Group Case (DIP with Hyperprior; posterior efficacy)
I True Efficacy: p1 = 0.25, p2 = 0.15 and p3 = 0.1, B = 0.2,

N = 345

Bal. BS DIP
E(S) 57.2 (4.2) 67.2 (6.5) 62.5 (5.6)

Power 79.5% 77.0% 76.9%
Error 0.0% 0.7% 0.9%
R50 – 3.68 (2.46) 3.32 (1.44) 1.88 (0.89) 1.81 (0.79)
R75 – 3.07 (0.82) 2.99 (0.61) 2.43 (0.79) 2.37 (0.73)
R100 – 2.93 (0.40) 2.94 (0.32) 2.91 (0.44) 2.93 (0.35)
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Simulation Study
Data Example

I Three Group Case (DIP with Hyperprior; posterior efficacy)
I True Efficacy: p1 = 0.55, p2 = 0.45 and p3 = 0.4, B = 0.2,

N = 618

Bal. BS DIP
E(S) 288.4 (8.9) 305.6 (21.0) 302.4 (19.3)

Power 78.8% 80.2% 80.3%
Error 0.0% 0.5% 0.8%
R50 – 3.54 (2.26) 3.20 (1.39) 2.57 (0.76) 2.52 (0.72)
R75 – 3.03 (0.68) 2.99 (0.51) 2.85 (0.52) 2.84 (0.47)
R100 – 2.93 (0.38) 2.95 (0.29) 2.93 (0.40) 2.94 (0.32)
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Simulation Study
Data Example

I Stem cell transplant patients treated at VCU Medical Center
(2003− 2010).

I Mobilization groups:
I Chemotherapy (Chemo)
I Granulocyte-colony stimulating factor (GCSF).

I Efficacy: patients produce ≥ 5× 106/kg total CD34+ cells.
I Chemo: n = 96, p̂e = 0.78
I GCSF: n = 222, p̂e = 0.64

I Patient data simulate a prospectively planned clinical trial.
I Patients accrued in chronological order per treatment.
I Outcomes available in order of mobilization (takes only a few

days).
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Simulation Study
Data Example

I Data Example: Stem Cell Mobilization
I Simulated trial after N = 150 patients accrued.

Method Successes n1 n2 p-value
Balanced 91 74 76 0.1698

TW (Mean) 94 79 71 0.1287
TW (Prob) 93 81 69 0.1067
DIP (Point) 92 77 73 0.1093
DIP (Mean) 94 86 64 0.1204
DIP (Prob) 95 87 63 0.0925
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Summary

I The DIP Methodology:

I Identical skeptical priors across groups.
I Priors become decreasingly informative as observations become

available.
I “Tempers” extreme outcomes in early stages of trials.

I In Outcome-Adaptive Allocation:

I Modest improvement in successes vs. balanced case.
I Less adaptation vs. Natural Lead-In method.
I Less variability vs. Natural Lead-In.

I Other Applications:

I Continual Reassessment Method (CRM).
I Interim Analyses, Early Trial Termination.
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Thank You

Questions?


	Optimal Designs in Outcome Adaptive Allocation
	2-Sample Case
	3-Sample Case

	Natural Lead-In Approach
	2-Sample Case
	3-Sample Case

	DIP Approach
	Prior Specification
	Examples

	Method Behavior
	Simulation Study
	Data Example

	Summary and Extension to Other Analyses

