The Use of Decreasingly Informative Priors in Adaptive Clinical Trial Designs

Roy T. Sabo

Department of Biostatistics School of Medicine Virginia Commonwealth University

Monday, November 4, 2013

- 1. Optimal Designs in Outcome Adaptive Allocation
 - ► 2-Sample Case
 - ► 3-Sample Case
- 2. Natural Lead-In Approach
 - ► 2-Sample Case
 - 3-Sample Case
- 3. Decreasingly Informative Prior (DIP) Approach
 - Prior Specification
 - Examples
- 4. Method Behavior
 - Simulation Study
 - Data Example
- 5. Summary and Extension to Other Analyses

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

2-Sample Case 3-Sample Case

- ► Two Sample Optimal Design (Rosenberger *et al.*, 2001):
 - Minimizes treatment failures $(n_1(1-p_1) + n_2(1-p_2))$.
 - Assumes fixed variance for each success rate.
 - Allocation weights:

$$w_1 = \frac{\sqrt{p_1}}{\sqrt{p_1} + \sqrt{p_2}}$$
$$w_2 = 1 - w_1$$

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

• In actual trials, p_j is replaced with sample proportion \hat{p}_j .

2-Sample Case 3-Sample Case

- ► Three Sample Optimal Design (Tymofyeyev *et al.*, 2007; Jeon and Hu, 2010):
 - Assuming fixed variances, minimizes treatment failures $(n_1(1-p_1) + n_2(1-p_2) + n_3(1-p_3)).$
 - Let $\mathbf{w}^* = (w_1^*, w_2^*, w_3^*)^T$ denote optimal proportions.
 - ► $B \in (0, 1/3)$ represents minimum allocation proportion.
 - Then for $p_1 > p_2 > p_3$, allocation weights are:

$$w_1^* = l_2^{-1}(l_1 + l_3 B)$$

$$w_2^* = B$$

$$w_3^* = 1 - B - w_1^*,$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

2-Sample Case 3-Sample Case

► Three Sample Optimal Design, continued:

where

$$l_{1} = (a(p_{1} - p_{3}) + b(p_{2} - p_{3}) + d)/p_{3}q_{3}$$

$$l_{2} = (b(p_{1} - p_{2}) + c(p_{1} - p_{3}) - d)/p_{1}q_{1} + l_{1}$$

$$l_{3} = (a(p_{1} - p_{2}) - c(p_{2} - p_{3}) + d)p_{2}q_{2} - l_{1}$$

$$a = -(Bq_{2} - (B - 1)q_{3})/p_{1}q_{1}$$

$$b = -(B(q_{3} - q_{1}))/p_{2}q_{2}$$

$$c = (Bq_{2} - (B - 1)q_{1})/p_{3}q_{3}$$

$$d = \sqrt{-ab(p_{1} - p_{2})^{2} - ac(p_{1} - p_{3})^{2} - bc(p_{2} - p_{3})^{2}}$$

- If $w_1^* \leq B$, the solution is $\mathbf{w}^* = (B, B, 1 2B)^T$.
- If $w_3^* \leq B$, the solution is $\mathbf{w}^* = (1 2B, B, B)^T$.

2-Sample Case 3-Sample Case

► Three Sample Optimal Design, continued:

• When
$$p_1 = p_2 > p_3$$
, if

$$B \leq min\left[rac{\sqrt{p_1}}{2(\sqrt{p_1}+\sqrt{p_3})},rac{\sqrt{p_3}}{\sqrt{p_1}+\sqrt{p_3}},1/3
ight],$$

the solution is:

$$w_1^* = w_2^* = \frac{\sqrt{p_1}}{2(\sqrt{p_1} + \sqrt{p_3})}$$
$$w_3^* = \frac{\sqrt{p_3}}{\sqrt{p_1} + \sqrt{p_3}}$$

• If $B > \frac{\sqrt{p_1}}{2(\sqrt{p_1} + \sqrt{p_3})}$, the solution is $\mathbf{w}^* = (B, B, 1 - 2B)^T$. • If $B > \frac{\sqrt{p_3}}{\sqrt{p_1} + \sqrt{p_3}}$, the solution is $\mathbf{w}^* = ((1 - B)/2, (1 - B)/2, B)^T$.

2-Sample Case 3-Sample Case

► Three Sample Optimal Design, continued:

• When
$$p_1 > p_2 = p_3$$
, if

$$B \leq \min\left[\frac{\sqrt{p_3}}{2(\sqrt{p_1}+\sqrt{p_3})}, 1/3\right],$$

the solution is:

$$w_1^* = \frac{\sqrt{p_1}}{\sqrt{p_1} + \sqrt{p_3}}$$

$$w_2^* = w_3^* = \frac{\sqrt{p_3}}{2(\sqrt{p_1} + \sqrt{p_3})}$$

If B > √p₃/(√p₁+√p₃), the solution is w* = (1 − 2B, B, B)^T.
 In actual trials, p_j is replaced with sample proportion p̂_j.

2-Sample Case 3-Sample Case

- Problems with optimal design:
 - Allocation weights not defined when $y_j = 0$ or $y_j = n_j$.
 - Allocation weights more variable when n_j are small.
- Possible Solutions:
 - Hard Lead-In: fix allocation proportions for certain number of subjects.
 - Conditional Hard Lead-In: fix allocation proportions until at least one success observed in each arm.

- ► Natural lead-in:
 - Restricts allocation proportions in early phases of trial.
 - Ability to adapt increases as trial continues.
 - Often use Bayes estimators.

2-Sample Case 3-Sample Case

► Two Sample Natural Lead-In (Thall and Wathen, 2007):

Allocation weights:

$$w_1 = \frac{p_1^{c(n,N)}}{p_1^{c(n,N)} + p_2^{c(n,N)}}$$
$$w_2 = 1 - w_1$$

$$c(n,N) = n/2N$$

- ► In actual trials, p_1 and p_2 replaced with posterior probabilities $P(p_1 > p_2)$ and $P(p_2 > p_1)$ (Thompson, 1933).
- Allocation proportions begin at equal allocation.
- Allocation allowed to increase as trial continues.

2-Sample Case 3-Sample Case

- ► Three Sample Natural Lead-In (Bello and Sabo, submitted):
 - ► Allocation weights (based off Hu and Zhang (2004)):

$$w_{j} = \frac{w_{j}^{*} \left((w_{j}^{*} \sum_{i=1}^{3} n_{i})/n_{j} \right)^{\gamma(n,N)}}{\sum_{k=1}^{3} w_{k}^{*} \left((w_{k}^{*} \sum_{i=1}^{3} n_{i})/n_{k} \right)^{\gamma(n,N)}}$$

$$j = 1, 2, 3,$$

$$\gamma(n,N) = (N - (n+1))/n$$

- ► In actual trials, p_1 replaced with posterior probability $P[(p_1 > p_2) \bigcap (p_1 > p_3)]$, etc.
- ► Allocation proportions begin at equal allocation.
- Allocation allowed to increase as trial continues.

- Problems with Natural Lead-In Methods:
 - *Ad hoc*: not designed to optimize anything.
 - ► If estimators of *p_j* not used, then allocation proportions *DO NOT* converge to optimality.
- Alternative Solutions:
 - Use posterior to estimate mean or mode instead of efficacy probabilities
 - ► Use posterior estimators that do not change much when *n* is small.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• Use optimal designs in two- and three-group cases.

Prior Specification Examples

- Decreasingly Informative Priors:
 - Mass or density functions.
 - ► Parameters are functions of observed (*n*) and planned (*N*) sample sizes.
 - Skeptical priors: centered around some value θ_0 .
- ► In Bayes set-up:
 - Identical priors for all groups (e.g. treatment groups).
 - ▶ When *n* is small, more information in prior than likelihood.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

► As *n* increases, information incrementally transferred to likelihood.

Prior Specification Examples

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

General Set-Up:

$$\theta \sim P(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)\pi(\theta|\theta_0, n, N)g(\theta_0|\lambda)}{\int f(\mathbf{y}|\theta)\pi(\theta|\theta_0, n, N)g(\theta_0|\lambda)}$$

- $y \rightarrow$ observed data
- $\theta \rightarrow$ parameter of interest
- ▶ $f(.) \rightarrow$ likelihood
- $\pi(.|\theta_0, n, N) \rightarrow \text{DIP}$
- $g(.) \rightarrow$ hyperprior on θ_0 with hyperparameter λ

- ► Say we have binary outcomes in *K* groups.
- Model: beta-binomial conjugate pair.
- Point Mass DIP centered at p_0 .
 - $f(.) \rightarrow y_k \sim \text{binomial}(n_k, p_k)$
 - ► DIP: $\pi(.|\theta_0, n, N) \rightarrow p_k \sim \text{beta} [1 + p_0(N - n), 1 + (1 - p_0)(N - n)]$
 - $g(.) \rightarrow p_0 = p_0$ with probability 1
 - ► $\theta \to p_k \sim$ beta $[1 + y_k + p_0(N - n), 1 + (n_k - y_k) + (1 - p_0)(N - n)]$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- ► Say we have binary outcomes in *K* groups.
- Model: beta-binomial conjugate pair.
- DIP centered at p_0 with hyperprior.
 - $f(.) \rightarrow y_k \sim \text{binomial}(n_k, p_k)$
 - ► DIP: $\pi(.|\theta_0, n, N) \rightarrow p_k \sim \text{beta} [1 + p_0(N - n), 1 + (1 - p_0)(N - n)]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

- $g(.) \rightarrow p_0$ beta $[1 + \delta_1, 1 + \delta_2]$
- $\theta \to p_k \sim f(p_k | y_k, n, N, p_0, \delta_1, \delta_2)$

- ► Say we have continuous outcomes in *K* groups.
- Model: normal-normal conjugate pair.
- DIP centered at μ_0 with hyperprior and fixed variance ϕ_0 .
 - $f(.) \rightarrow y_k \sim \operatorname{normal}(\mu_k, \phi_k)$
 - ► DIP: $\pi(.|\theta_0, n, N) \rightarrow \mu_k | \phi_k \sim \operatorname{normal}(\mu_0, \phi_0(n, N))$, where $\phi_0(n, N)$ is some increasing function of *n*.

- $g(.) \rightarrow \mu_0 \operatorname{normal}(0, \phi_A)$, where ϕ_A is large
- $\bullet \ \theta \to \mu_k \sim f(\mu_k | y_k, n, N, \theta_0, \phi_0, \phi_A)$

- ► Say we have count outcomes in *K* groups.
- Model: gamma-Poisson conjugate pair.
- DIP centered at λ_0 with hyperprior.
 - $f(.) \rightarrow y_k \sim \text{Poisson}(\lambda_k)$
 - ► DIP: $\pi(.|\theta_0, n, N) \rightarrow \lambda_k \sim \text{gamma}(\alpha_0(n, N), \beta_0(n, N))$, where $\alpha_0(n, N) \rightarrow 1$ and $\beta_0(n, N) \rightarrow 0$ as $n \rightarrow N$.
 - g(.) → α₀ ~ gamma(α₁, β₁) and beta₀ ~ gamma(α₂, β₂) are both difuse.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 $\blacktriangleright \ \theta \to \lambda_k \sim f(\lambda_k | y_k, n, N, \alpha_0(n, N), \beta_0(n, N), \alpha_1, \alpha_2, \beta_1, \beta_2)$

Prior Specification Examples

- Calculating $P(p_1 > p_2)$ or $P[(p_1 > p_2) \cap (p_1 > p_3)]$:
 - Integration
 - ► Direct Sampling (conjugate pairs, DIP with point mass, NLI)
 - ► MCMC.
- Posterior Mean or Mode:
 - Can be calculated directly (conjugate pairs, DIP with point mass, NLI).

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Integration, Direct Sampling, MCMC

Simulation Study Data Example

► Two Group Case (DIP with Point Mass)

• True Efficacy: $p_1 = 0.5$ and $p_2 = 0.3$, N = 200

			DIP	
	TW	$p_0 = 0.2$	$p_0 = 0.3^*$	$p_0 = 0.4$
$\%(n_1 > n_2)$	99.7%	98.4%	99.4%	99.6%
Power	80.9%	71.8%	78.6%	79.7%
\hat{n}_1	144.7	153.8	148.3	143.0
\hat{n}_2	55.3	46.2	51.7	57.0
(SD)	(16.37)	(20.07)	(16.60)	(14.16)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

* indicates correct choice of prior.

Simulation Study Data Example

► Two Group Case (DIP with Point Mass)

• True Efficacy: $p_1 = 0.7$ and $p_2 = 0.5$, N = 200

			DIP	
	TW	$p_0 = 0.4$	$p_0 = 0.5^*$	$p_0 = 0.6$
$\%(n_1 > n_2)$	98.9%	98.2%	98.5%	98.6%
Power	79.1%	75.8%	79.8%	77.5%
\hat{n}_1	143.6	150.0	146.8	142.9
\hat{n}_2	56.4	50.0	53.2	57.1
(SD)	(17.80)	(19.08)	(17.14)	(15.32)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

* indicates correct choice of prior.

Simulation Study Data Example

► Two Group Case (DIP with Point Mass)

• True Efficacy: $p_1 = 0.9$ and $p_2 = 0.7$, N = 200

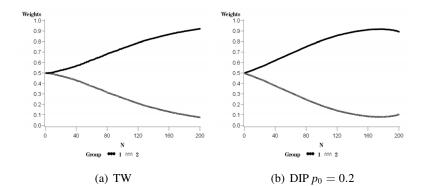
			DIP	
	TW	$p_0 = 0.6$	$p_0 = 0.7^*$	$p_0 = 0.8$
$\%(n_1 > n_2)$	99.9%	99.3%	99.8%	99.9%
Power	95.3%	92.2%	94.7%	93.8%
\hat{n}_1	153.0	154.0	153.0	151.5
\hat{n}_2	47.0	46.0	47.0	48.5
(SD)	(15.76)	(15.70)	(14.09)	(13.34)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

* indicates correct choice of prior.

Simulation Study Data Example

- ► Two Group Case (DIP with Point Mass)
- True Efficacy: $p_1 = 0.5 p_2 = 0.3, N = 200$



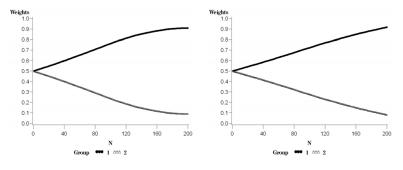
ヘロト 人間 とくほ とくほとう

3

990

Simulation Study Data Example

- ► Two Group Case (DIP with Point Mass)
- True Efficacy: $p_1 = 0.5 p_2 = 0.3, N = 200$



(c) DIP $p_0 = 0.3$

(d) DIP $p_0 = 0.4$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ► Two Group Case (DIP with Hyperprior; posterior mean)
- True Efficacy: $p_1 = 0.25$ and $p_2 = 0.1$, N = 200

	Bal.	TW	DIP
Exp. Succ.	35.1 (3.85)	36.5 (4.28)	36.1 (4.00)
\hat{n}_1	100.2 (7.13)	110.6 (7.81)	105.3 (6.89)
\hat{n}_2	99.8 (7.13)	89.4 (7.81)	94.7 (6.89)
Power	80.0%	81.2%	80.3%
Error	0.0%	0.0%	0.0%
R_{50}	_	1.24 (0.15)	1.06 (0.04)
R_{75}	_	1.40 (0.22)	1.14 (0.07)
R_{100}	—	1.58 (0.30)	1.53 (0.25)

- ► Two Group Case (DIP with Hyperprior; posterior mean)
- True Efficacy: $p_1 = 0.55$ and $p_2 = 0.4$, N = 352

	Bal.	TW	DIP
Exp. Succ.	167.2 (7.86)	167.9 (8.92)	167.8 (8.57)
\hat{n}_1	175.7 (9.47)	183.1 (10.23)	181.4 (9.65)
\hat{n}_2	176.3 (9.47)	168.9 (10.23)	170.6 (9.65)
Power	80.0%	81.3%	80.1%
Error	0.0%	0.0%	0.0%
R_{50}	_	1.08 (0.04)	1.05 (0.03)
R_{75}	_	1.13 (0.06)	1.10 (0.04)
<i>R</i> ₁₀₀	_	1.17 (0.07)	1.17 (0.07)

- ► Two Group Case (DIP with Hyperprior; posterior efficacy)
- True Efficacy: $p_1 = 0.25$ and $p_2 = 0.1$, N = 200

	Bal.	TW	DIP
Exp. Succ.	35.1 (3.85)	40.6 (5.12)	38.5 (4.56)
\hat{n}_1	100.2 (7.13)	138.6 (12.85)	122.7 (7.60)
\hat{n}_2	99.8 (7.13)	61.4 (12.85)	77.3 (7.60)
Power	80.0%	77.8%	83.1%
Error	0.0%	0.0%	0.0%
R_{50}	_	2.56 (1.11)	1.44 (0.29)
R_{75}	_	5.51 (3.12)	2.24 (0.73)
R_{100}	_	12.2 (8.22)	12.3 (7.78)

- ► Two Group Case (DIP with Hyperprior; posterior efficacy)
- True Efficacy: $p_1 = 0.55$ and $p_2 = 0.4$, N = 352

	Bal.	TW	DIP
Exp. Succ.	167.2 (7.86)	178.0 (15.11)	175.1 (12.79)
\hat{n}_1	175.7 (9.47)	244.1 (22.60)	226.9 (17.08)
\hat{n}_2	176.3 (9.47)	107.9 (22.60)	125.1 (17.08)
Power	80.0%	76.5%	81.5%
Error	0.0%	0.0%	0.0%
R_{50}	_	2.63 (1.12)	1.69 (0.46)
R_{75}	_	5.55 (3.14)	3.24 (1.57)
<i>R</i> ₁₀₀	_	12.3 (8.44)	12.4 (8.13)

- ► Three Group Case (DIP with Hyperprior; posterior mean)
- ▶ True Efficacy: p₁ = 0.25, p₂ = 0.15 and p₃ = 0.1, B = 0.2, N = 345

	Bal.	BS		DIP	
E(S)	57.2 (4.2)	62.6 (6.1)		59.0 (4.6)	
Power	79.5%	81.1%		78.5%	
Error	0.0%	1.1%		1.3%	
R_{50}	_	2.93 (2.17)	2.36 (1.79)	1.39 (0.75)	1.29 (0.69)
R_{75}	_	2.30 (1.05)	1.96 (0.98)	1.53 (0.77)	1.32 (0.70)
R_{100}	_	2.18 (0.75)	1.87 (0.73)	2.18 (0.74)	1.83 (0.72)

- ► Three Group Case (DIP with Hyperprior; posterior mean)
- True Efficacy: $p_1 = 0.55$, $p_2 = 0.45$ and $p_3 = 0.4$, B = 0.2, N = 618

	Bal.	BS		DIP	
E(S)	288.4 (8.9)	294.4	294.4 (14.9)		(11.6)
Power	78.8%	81.3%		80.1%	
Error	0.0%	0.7%		1.	3%
R_{50}	—	2.34 (1.50)	2.00 (1.58)	1.44 (0.70)	1.31 (0.67)
R_{75}	—	2.00 (0.84)	1.61 (0.87)	1.66 (0.67)	1.36 (0.65)
R_{100}	_	1.89 (0.61)	1.50 (0.63)	1.90 (0.58)	1.46 (0.61)

- ► Three Group Case (DIP with Hyperprior; posterior efficacy)
- ▶ True Efficacy: p₁ = 0.25, p₂ = 0.15 and p₃ = 0.1, B = 0.2, N = 345

	Bal.	BS		DIP	
E(S)	57.2 (4.2)	67.2 (6.5)		62.5 (5.6)	
Power	79.5%	77.0%		76.9%	
Error	0.0%	0.7%		0.9%	
R_{50}	_	3.68 (2.46)	3.32 (1.44)	1.88 (0.89)	1.81 (0.79)
R_{75}	_	3.07 (0.82)	2.99 (0.61)	2.43 (0.79)	2.37 (0.73)
R_{100}	_	2.93 (0.40)	2.94 (0.32)	2.91 (0.44)	2.93 (0.35)

- ► Three Group Case (DIP with Hyperprior; posterior efficacy)
- True Efficacy: $p_1 = 0.55$, $p_2 = 0.45$ and $p_3 = 0.4$, B = 0.2, N = 618

	Bal.	BS		DIP	
E(S)	288.4 (8.9)	305.6 (21.0)		302.4 (19.3)	
Power	78.8%	80.2%		80.3%	
Error	0.0%	0.5%		0.3	8%
R_{50}	_	3.54 (2.26)	3.20 (1.39)	2.57 (0.76)	2.52 (0.72)
R_{75}	_	3.03 (0.68)	2.99 (0.51)	2.85 (0.52)	2.84 (0.47)
R_{100}	_	2.93 (0.38)	2.95 (0.29)	2.93 (0.40)	2.94 (0.32)

Simulation Study Data Example

- ► Stem cell transplant patients treated at VCU Medical Center (2003 - 2010).
- Mobilization groups:
 - Chemotherapy (Chemo)
 - Granulocyte-colony stimulating factor (GCSF).
- Efficacy: patients produce $\geq 5 \times 10^6 / kg$ total CD34+ cells.
 - Chemo: n = 96, $\hat{p}_e = 0.78$
 - GCSF: $n = 222, \hat{p}_e = 0.64$
- ► Patient data simulate a prospectively planned clinical trial.
 - ► Patients accrued in chronological order *per treatment*.
 - Outcomes available in order of mobilization (takes only a few days).

Simulation Study Data Example

- Data Example: Stem Cell Mobilization
- Simulated trial after N = 150 patients accrued.

Method	Successes	n_1	n_2	<i>p</i> -value
Balanced	91	74	76	0.1698
TW (Mean)	94	79	71	0.1287
TW (Prob)	93	81	69	0.1067
DIP (Point)	92	77	73	0.1093
DIP (Mean)	94	86	64	0.1204
DIP (Prob)	95	87	63	0.0925

Summary

- The DIP Methodology:
 - Identical skeptical priors across groups.
 - Priors become decreasingly informative as observations become available.
 - "Tempers" extreme outcomes in early stages of trials.
- ► In Outcome-Adaptive Allocation:
 - Modest improvement in successes vs. balanced case.
 - Less adaptation vs. Natural Lead-In method.
 - Less variability vs. Natural Lead-In.
- Other Applications:
 - Continual Reassessment Method (CRM).
 - ► Interim Analyses, Early Trial Termination.

Acknowledgements

- Department of Biostatistics, VCU.
 - Ghalib Bello: Graduate Student
- Bone Marrow Transplant Division, Massey Cancer Center, VCU Medical Center.
 - ► John M. McCarty, M.D.: Principal Investiagor
 - Amir A. Toor, M.D.: Co-Investigator
 - ► Cathy Roberts, Ph.D.: Project Coordinator
- This work was supported in part by:
 - ► Grant MCC-12889 through the Genzyme Corporation
 - Biostatistics Shared Resource of the VCU Massey Cancer Center, funded from NIH-NCI Cancer Center Support Grant P30 CA016059.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

References

- Bello G, Sabo RT. Outcome-adaptive allocation with natural lead-in for three-group trials with binary outcomes. Statistics in Biopharmaceutical Research, submitted.
- Hu F, Zhang LX (2004). Asymptotic properties of doubly adaptive biased coin designs for multi-treatment clinical trials. *The Annals of Statistics* 32: 268–301.
- Jeon Y, Hu F (2010). Optimal adaptive designs for binary response trials with three treatments. Statistics in Biopharmaceutical Research 2(3): 310–318.
- Rosenberger WF, Stallard N, Ivanova A, Harper CN, Ricks ML (2001). Optimal adaptive designs for binary response trials. *Biometrics* 57: 909–913.
- Thall PF, Wathen JK (2007). Practical Bayesian adaptive randomization in clinical trials. European Journal of Cancer 43(5): 859–866.
- Thompson WR (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika* 25(3-4): 285–294.
- Tymofyeyev Y, Rosenberger WF, Hu F (2007). Implementing optimal allocaiton in sequential binary response experiments. Journal of the American Statistical Association 102(477): 224–234.

Thank You

Questions?

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへぐ